On discretely generated box products

Hector Alonso Barriga Acosta bhector@matmor.unam.mx

Advisor: Fernando Hernández Hernández Posgrado Conjunto UNAM-UMSNH Morelia, Mexico.

Hejnice - February 4, 2016

Preliminaries	Important results	Answer
●00000	0	o
○	00000000	oooooooooooooooo
Definitions		

Definition

Let $\{X_t : t \in T\}$ be a family of topological spaces. The box product $\Box_{t \in T} X_t$ of the spaces X_t is the set $\prod_{t \in T} X_t$ with the topology τ_{\Box} generated by

$$\{\prod_{t\in\mathcal{T}}U_t:U_t\subseteq X_t \text{ open}\}.$$

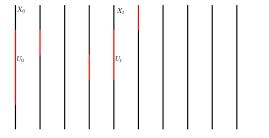
$$X_0$$
 X_t U_0 U_t

Preliminaries o●000 o	
Definitions	

Definition

The Tychonoff product of the spaces X_t is the set $\prod_{t \in T} X_t$ with the topology τ generated by

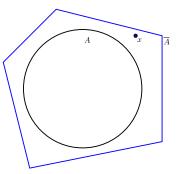
$$\{\prod_{t\in F} U_t \times \prod_{t\in T\setminus F} X_t : U_t \subseteq X_t \text{ open } \land F \subseteq T \text{ finite}\}.$$



Important results 0 00000000

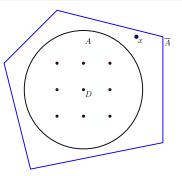
Definition (A. Dow, V. Tkachuk, M. Tkachenko and R. Wilson, 2002)

A topological space X is discretely generated if for any subset $A \subseteq X$ and $x \in \overline{A}$, there is a discrete set $D \subseteq A$ such that $x \in \overline{D}$.



Definition (A. Dow, V. Tkachuk, M. Tkachenko and R. Wilson, 2002)

A topological space X is discretely generated if for any subset $A \subseteq X$ and $x \in \overline{A}$, there is a discrete set $D \subseteq A$ such that $x \in \overline{D}$.

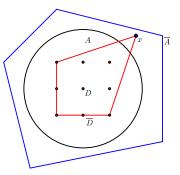


On discretely generated box products

Hector Alonso Barriga Acosta bhector@matmor.unam.mx

Definition (A. Dow, V. Tkachuk, M. Tkachenko and R. Wilson, 2002)

A topological space X is discretely generated if for any subset $A \subseteq X$ and $x \in \overline{A}$, there is a discrete set $D \subseteq A$ such that $x \in \overline{D}$.



On discretely generated box products

Hector Alonso Barriga Acosta bhector@matmor.unam.mx

Preliminaries ○○○○○ ●	
Remarks	

Examples:

• \mathbb{R} (and all subsets) is discretely generated.

Preliminaries ○○○○○ ●	
Remarks	

- \mathbb{R} (and all subsets) is discretely generated.
- Every metric space is discretely generated. (convergent sequences are discrete subsets)

Preliminaries ○○○○○ ●	
Remarks	

- \mathbb{R} (and all subsets) is discretely generated.
- Every metric space is discretely generated. (convergent sequences are discrete subsets)
- Metric \Rightarrow First countable \Rightarrow Fréchet-Urysohn \Rightarrow Secuential \Rightarrow Discretely generated

Preliminaries ○○○○○ ●	
Remarks	

- \mathbb{R} (and all subsets) is discretely generated.
- Every metric space is discretely generated. (convergent sequences are discrete subsets)
- Metric \Rightarrow First countable \Rightarrow Fréchet-Urysohn \Rightarrow Secuential \Rightarrow Discretely generated
- Does exist a NON discretely generated space?

Preliminaries ○○○○○ ●	
Remarks	

- \mathbb{R} (and all subsets) is discretely generated.
- Every metric space is discretely generated. (convergent sequences are discrete subsets)
- Metric \Rightarrow First countable \Rightarrow Fréchet-Urysohn \Rightarrow Secuential \Rightarrow Discretely generated
- Does exist a NON discretely generated space? Yes. There is a countable regular space V that is not discretely generated (due to Eric van Douwen, 1993).

• Discrete generability is hereditary.

- 4 同 ト 4 ヨ ト 4 ヨ ト

• Discrete generability is hereditary. If X is not discretely generated and X embeds into Y, then Y is not discret generated.

| 4 同 1 4 三 1 4 三 1

- Discrete generability is hereditary. If X is not discretely generated and X embeds into Y, then Y is not discret generated.
- 2^c is not discretely generated. (The space V due to Eric van Douwen embeds in it)

- Discrete generability is hereditary. If X is not discretely generated and X embeds into Y, then Y is not discret generated.
- 2^c is not discretely generated. (The space V due to Eric van Douwen embeds in it)
- Each compact space of countable tightness is discretely generated.

伺 ト イ ヨ ト イ ヨ ト

- Discrete generability is hereditary. If X is not discretely generated and X embeds into Y, then Y is not discret generated.
- 2^c is not discretely generated. (The space V due to Eric van Douwen embeds in it)
- Each compact space of countable tightness is discretely generated.
- If the space 2^{ω1} is not discretely generated then every dyadic compact discretely generated space is metrizable.

伺 ト イヨト イヨト

- Discrete generability is hereditary. If X is not discretely generated and X embeds into Y, then Y is not discret generated.
- 2^c is not discretely generated. (The space V due to Eric van Douwen embeds in it)
- Each compact space of countable tightness is discretely generated.
- If the space 2^{ω1} is not discretely generated then every dyadic compact discretely generated space is metrizable.
- If there exists an L-space then 2^{ω1} is not discretely generated.
 (J. Moore proved the existance of an L-space in ZFC, 2006)

Important results 0000000

э

A YOUNG THEORY!

On discretely generated box products

<ロ> <同> <同> < 回> < 回> Hector Alonso Barriga Acosta bhector@matmor.unam.mx

	Important results	
00000		
	●0000000	
Young theory		

• If X is discretely generated, is X^2 discretely generated?

	Important results	
	●0000000	
Young theory		

- If X is discretely generated, is X^2 discretely generated?
- If X is Fréchet-Urysohn or secuential, is X² discretely generated?

	Important results	
	●0000000	
Young theory		

- If X is discretely generated, is X^2 discretely generated?
- If X is Fréchet-Urysohn or secuential, is X² discretely generated?
- Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?

	Important results	
00000		
	●0000000	
Young theory		

- If X is discretely generated, is X^2 discretely generated?
- If X is Fréchet-Urysohn or secuential, is X² discretely generated?
- Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?
- Is the Tychonoff product or the box product of $(\{\xi\}\cup\omega)^\omega$ discretely generated?

	Important results	
	0000000	000000000000
Young theory		

Theorem (Tkachuk-Wilson, 2012)

Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.

- Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?
- Is the Tychonoff product or the box product of $(\{\xi\}\cup\omega)^\omega$ discretely generated?

伺 ト イヨト イヨト

	Important results	
	000000	000000000000
Young theory		

Theorem (Tkachuk-Wilson, 2012)

Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.

- Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?
- Is the Tychonoff product or the box product of $(\{\xi\} \cup \omega)^{\omega}$ discretely generated?

伺 ト イ ヨ ト イ ヨ ト

	Important results	
	000000	000000000000
Young theory		

Theorem (Tkachuk-Wilson, 2012)

Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.

- Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?
- Is the Tychonoff product or the box product of $(\{\xi\} \cup \omega)^{\omega}$ discretely generated?
- If X is first countable, is $\Box X^{\omega}$ discretely generated?

	Important results	
	0000000	
Young theory		

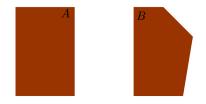
Theorem (Tkachuk-Wilson, 2012)

Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.

	Important results ○ ○○○●○○○○	
Young theory		

Theorem (Tkachuk-Wilson, 2012)

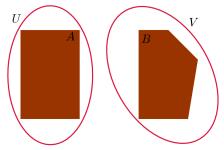
Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.



	Important results ○ ○○○○●○○○	
Young theory		

Theorem (Tkachuk-Wilson, 2012)

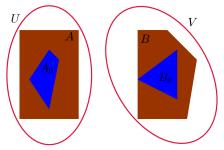
Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.



	Important results ○ ○○○○○●○○	
Young theory		

Theorem (Tkachuk-Wilson, 2012)

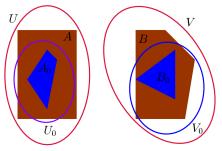
Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.



	Important results	
00000		
	00000000	
Young theory		

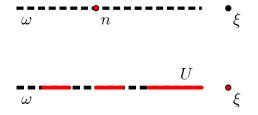
Theorem (Tkachuk-Wilson, 2012)

Consider a family of monotonically normal spaces $X_t, t \in T$. Then the box product $\Box_{t \in T} X_t$ is discretely generated.



	Important results	
	0000000	0 00000000000
Young theory		

Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$? Topology on space $\{\xi\} \cup \omega$ is: $(U \in \xi)$



Hector Alonso Barriga Acosta bhector@matmor.unam.mx

伺 ト イ ヨ ト イ ヨ ト

	Important results 0 00000000	Answer
Motivation		

Motivation

Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?

Is the answer is positive, does the ultrafilter ξ have something special? In other words, ultrafilter ξ could be a *P*-point, *Q*-point or may be a Ramsey (selective) ultrafilter?

Preliminaries	Answer
00000	00000000000
Motivation	

Motivation

Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?

- Is the answer is positive, does the ultrafilter ξ have something special? In other words, ultrafilter ξ could be a *P*-point, *Q*-point or may be a Ramsey (selective) ultrafilter?
- If the answer is negative... well, another problem out of the list.

Preliminaries	Answer
00000	00000000000
Motivation	

Motivation

Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines, for any $\xi \in \beta \omega \setminus \omega$?

- Is the answer is positive, does the ultrafilter ξ have something special? In other words, ultrafilter ξ could be a *P*-point, *Q*-point or may be a Ramsey (selective) ultrafilter?
- If the answer is negative... well, another problem out of the list.

The answer is negative.

	Answer ○ ●000000000000
Sketch of proof	

Sketch

Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines $(\Box \mathbb{R}^{\kappa})$, for any $\xi \in \beta \omega \setminus \omega$? We want to show NO.

- Suppose there is an embedding $arphi:\{\xi\}\cup\omega
ightarrow\square(\omega+1)^\omega$.

	Answer ○ ●000000000000
Sketch of proof	

Sketch

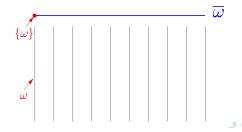
Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines $(\Box \mathbb{R}^{\kappa})$, for any $\xi \in \beta \omega \setminus \omega$? We want to show NO.

• Suppose there is an embedding $\varphi : \{\xi\} \cup \omega \to \Box (\omega + 1)^{\omega}$. Objetive: Provide two sets $U, V \subseteq \omega$ such that $U \cap V = \emptyset$ and $\xi \in \overline{U} \cap \overline{V}$. This will be a contradiction.

	Answer ○ ●00000000000
Sketch of proof	

Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines $(\Box \mathbb{R}^{\kappa})$, for any $\xi \in \beta \omega \setminus \omega$? We want to show NO.

- Suppose there is an embedding $\varphi : \{\xi\} \cup \omega \to \Box (\omega + 1)^{\omega}$. Objetive: Provide two sets $U, V \subseteq \omega$ such that $U \cap V = \emptyset$ and $\xi \in \overline{U} \cap \overline{V}$. This will be a contradiction.
- Let A = φ(ω) and for simplicity suppose that φ(ξ) = ω.
 (the ceiling ω is the constant function equal to ω)

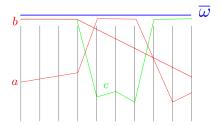


	Answer ○ ○●○○○○○○○○○○
Sketch of proof	

• Denote $supp(a) = \{n \in \omega : a(n) \neq \omega\}$ and divide A as $A = A_{\infty} \cup A_0$, where

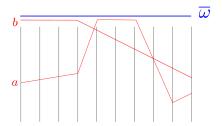
 $A_{\infty} = \{a \in A : supp(a) \text{ is infinite}\}$ and

$$A_0 = \{a \in A : supp(a) \text{ is finite}\}.$$



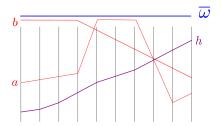
	Answer ○ ○○●○○○○○○○○○○
Sketch of proof	

• We can ignore A_{∞} because $|A_{\infty}| \leq \aleph_0 < \mathfrak{b}$, so is not enough to reach $\overline{\omega}$.



	Answer ○ ○○○●○○○○○○○○
Sketch of proof	

• We can ignore A_{∞} because $|A_{\infty}| \leq \aleph_0 < \mathfrak{b}$, so is not enough to reach $\overline{\omega}$.

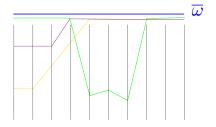


	Answer ○ ○○○○●○○○○○○○
Sketch of proof	

• Thus, assume $A = A_0$. Next, let

$$A=\bigsqcup_{F\in[\omega]^{<\omega}}A_F,$$

where
$$A_F = \{a \in A : supp(a) = F\}.$$

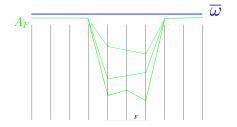


	Answer ○ ○○○○○●○○○○○○
Sketch of proof	

• Thus, assume $A = A_0$. Next, let

$$A=\bigsqcup_{F\in[\omega]^{<\omega}}A_F,$$

where
$$A_F = \{a \in A : supp(a) = F\}.$$

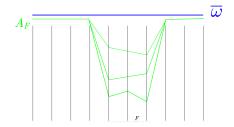


On discretely generated box products

	Answer ○ ○○○○○○●○○○○○
Sketch of proof	

Two cases:

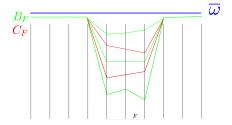
① Suppose that $\overline{\omega} \in \overline{A_F}$, for some *F*.



	Answer ○ ○○○○○○○●○○○○
Sketch of proof	

Two cases:

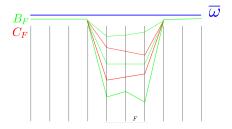
• Suppose that
$$\overline{\omega} \in \overline{A_F}$$
, for some F .
 $(U = \varphi^{-1}[B_F] \text{ and } V = \varphi^{-1}[C_F])$



	Answer ○ ○○○○○○○○○○○○○○
Sketch of proof	

Two cases:

- **1** Suppose that $\overline{\omega} \in \overline{A_F}$, for some *F*.
- **2** Suppose that $\overline{\omega} \notin \overline{A_F}$, for any *F*.



	Important results 0 00000000	Answer ○ ○○○○○○○○○○○
Sketch of proof		

• All A_F are infinite (we can avoid all A_F that are finite).

	Answer ○ ○○○○○○○○○○○
Sketch of proof	

- All A_F are infinite (we can avoid all A_F that are finite).
- Since $A_F \subseteq (\omega + 1)^F$ and the last is compact, then $A'_F = \overline{A_F} \setminus A_F \neq \emptyset$.

通 と く ヨ と く ヨ と

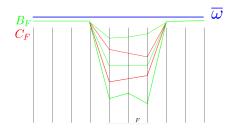
	Answer ○ ○○○○○○○○○○○○
Sketch of proof	

- All A_F are infinite (we can avoid all A_F that are finite).
- Since $A_F \subseteq (\omega + 1)^F$ and the last is compact, then $A'_F = \overline{A_F} \setminus A_F \neq \emptyset$.
- We can get $B_F, C_F \subseteq A_F$ such that $B_F \cap C_F = \emptyset$ and $A'_F = B'_F = C'_F$.

ヨッ イヨッ イヨッ

	Answer ○ ○○○○○○○○○○
Sketch of proof	

- All A_F are infinite (we can avoid all A_F that are finite).
- Since $A_F \subseteq (\omega + 1)^F$ and the last is compact, then $A'_F = \overline{A_F} \setminus A_F \neq \emptyset$.
- We can get $B_F, C_F \subseteq A_F$ such that $B_F \cap C_F = \emptyset$ and $A'_F = B'_F = C'_F$.



	Answer ○ ○○○○○○○○○○○
Sketch of proof	

• The sets $B = \bigcup_{F \in [\omega]^{<\omega}} B_F$ and $C = \bigcup_{F \in [\omega]^{<\omega}} C_F$ are disjoint subsets of A and $\overline{\omega} \in \overline{B} \cap \overline{C}$.

Hector Alonso Barriga Acosta bhector@matmor.unam.mx

伺 と く ヨ と く ヨ と

	Answer 0 0000000000000000000000000000000000
Sketch of proof	

The sets B = ⋃_{F∈[ω]<∞} B_F and C = ⋃_{F∈[ω]<∞} C_F are disjoint subsets of A and w̄ ∈ B ∩ C.

The sets U = φ⁻¹[B] and V = φ⁻¹[C] work for the contradiction!

On discretely generated box products

Hector Alonso Barriga Acosta bhector@matmor.unam.mx

ヨッ イヨッ イヨッ

Na zdraví for your attention!

On discretely generated box products

Hector Alonso Barriga Acosta bhector@matmor.unam.mx

- 4 同 ト 4 ヨ ト 4 ヨ ト